THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1520C University Mathematics 2014-2015

Suggested Solution to Test 1

1. (a) $\lim _{x \rightarrow 5} \frac{x^{3}-125}{x-5}=\lim _{x \rightarrow 5} x^{2}+5 x+25=75$
(b) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2}=\frac{1}{4}$
2. (a) $\lim _{x \rightarrow+\infty} \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}=\lim _{x \rightarrow+\infty} \frac{1+e^{-2 x}}{1-e^{-2 x}}=1$
(b) $\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}-4 x}}=\lim _{x \rightarrow-\infty} \frac{1}{\frac{1}{x} \sqrt{x^{2}-4 x}}=\lim _{x \rightarrow-\infty} \frac{1}{-\sqrt{1-\frac{4}{x}}}=-1$
3. We can rewrite $f(x)$ as

$$
f(x)=\left\{\begin{array}{ccc}
x^{2} & \text { if } & x \geq 0 \\
-x^{2} & \text { if } & x<0
\end{array}\right.
$$

We have $\lim _{h \rightarrow 0^{+}} f(h)=h^{2}=0, \lim _{h \rightarrow 0^{-}} f(h)=-h^{2}=0$ and $f(0)=0$. Therefore, f is continuous at $x=0$.
(b) We have

$$
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{h^{2}-0}{h}=\lim _{h \rightarrow 0^{+}} h=0
$$

and

$$
\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h^{2}-0}{h}=\lim _{h \rightarrow 0^{-}}-h=0
$$

Therefore, f is differentiable at $x=0$ and $f^{\prime}(0)=0$.
4. We have

$$
\begin{aligned}
y & =\frac{e^{5 x} \sqrt[4]{2 x-5}}{(3 x-5)^{3}} \\
\ln y & =5 x+\frac{1}{4} \ln (2 x-5)-3 \ln (3 x-5) \\
\frac{1}{y} \cdot \frac{d y}{d x} & =5+\frac{1}{2(2 x-5)}-\frac{9}{3 x-5} \\
\frac{d y}{d x} & =\left(5+\frac{1}{2(2 x-5)}-\frac{9}{3 x-5}\right) \frac{e^{5 x} \sqrt[4]{2 x-5}}{(3 x-5)^{3}}
\end{aligned}
$$

5. (a) The initial population is $N(0)=5000$.
(b) We have

$$
\begin{aligned}
N(t) & =5000(2+t) e^{-0.01 t} \\
N^{\prime}(t) & =5000 e^{-0.01 t}(1-0.01(2+t)) \\
& =50 e^{-0.01 t}(98-t)
\end{aligned}
$$

We then know that $N^{\prime}(t)>0$ when $t<98$ and $N^{\prime}(t)<0$ when $t>98$.
Therefore, the population attains maximum when $t=98$ and the maximum population is $N(98)=500000 e^{-0.98}$.
(c) $\lim _{t \rightarrow+\infty} N(t)=0$.
6. skipped.

